[1] AVIS de l’ANSES relatif à l'actualisation des repères alimentaires du PNNS pour les femmes enceintes et allaitantes - Juin 2019
[2] Judith Stephenson et al., « Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health », Lancet (London, England) 391, no 10132 (5 mai 2018): 1830‑41, https://doi.org/10.1016/S0140-6736(18)30311-8.
[3] Régine P.M. Steegers-Theunissen et al., « The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism », Human Reproduction Update 19, no 6 (1 novembre 2013): 640‑55, https://doi.org/10.1093/humupd/dmt041.
[4] Judith Stephenson et al., « Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health », Lancet (London, England) 391, no 10132 (5 mai 2018): 1830‑41, https://doi.org/10.1016/S0140-6736(18)30311-8.
[5] Bold & Bedford. Integrated approaches to infertility, IVF and recurrent miscarriage. 2016 Singing Dragon UK
[6] Caulfield, Laura E., Victoria Elliot, Program in Human Nutrition, the Johns Hopkins Bloomberg School of Public Health, for SPRING. 2015. Nutrition of Adolescent Girls and Women of Reproductive Age in Low- and Middle-Income Countries: Current Context and Scientific Basis for Moving Forward. Arlington, VA: Strengthening Partnerships, Results, and Innovations in Nutrition Globally (SPRING) project.
[7] Loren Cordain et al., « Origins and Evolution of the Western Diet: Health Implications for the 21st Century », The American Journal of Clinical Nutrition 81, no 2 (février 2005): 341‑54, https://doi.org/10.1093/ajcn.81.2.341.
[8] Janet M. Catov et al., « Association of Periconceptional Multivitamin Use With Reduced Risk of Preeclampsia Among Normal-Weight Women in the Danish National Birth Cohort », American Journal of Epidemiology 169, no 11 (1 juin 2009): 1304‑11, https://doi.org/10.1093/aje/kwp052.
[9] Andrew E. Czeizel, Márta Dobó, et Péter Vargha, « Hungarian Cohort-Controlled Trial of Periconceptional Multivitamin Supplementation Shows a Reduction in Certain Congenital Abnormalities », Birth Defects Research. Part A, Clinical and Molecular Teratology 70, no 11 (novembre 2004): 853‑61, https://doi.org/10.1002/bdra.20086.
[10] Ingrid P. C. Krapels et al., « Maternal Dietary B Vitamin Intake, Other than Folate, and the Association with Orofacial Cleft in the Offspring », European Journal of Nutrition 43, no 1 (février 2004): 7‑14, https://doi.org/10.1007/s00394-004-0433-y.
[11] Luz Maria De‐Regil et al., « Effects and safety of periconceptional oral folate supplementation for preventing birth defects », The Cochrane Database of Systematic Reviews 2015, no 12 (14 décembre 2015): CD007950, https://doi.org/10.1002/14651858.CD007950.pub3.
[12] Yuan He et al., « Folic Acid Supplementation, Birth Defects, and Adverse Pregnancy Outcomes in Chinese Women: A Population-Based Mega-Cohort Study », The Lancet, The Lancet-CAMS Health Summit, 2016, 388 (1 octobre 2016): S91, https://doi.org/10.1016/S0140-6736(16)32018-9.
[13] V. A. Hodgetts et al., « Effectiveness of Folic Acid Supplementation in Pregnancy on Reducing the Risk of Small-for-Gestational Age Neonates: A Population Study, Systematic Review and Meta-Analysis », BJOG: An International Journal of Obstetrics and Gynaecology 122, no 4 (mars 2015): 478‑90, https://doi.org/10.1111/1471-0528.13202.
[14] Yunfei Gao et al., « New Perspective on Impact of Folic Acid Supplementation during Pregnancy on Neurodevelopment/Autism in the Offspring Children – A Systematic Review », PLoS ONE 11, no 11 (22 novembre 2016): e0165626, https://doi.org/10.1371/journal.pone.0165626.
[15] Gary M. Shaw et al., « Periconceptional Dietary Intake of Choline and Betaine and Neural Tube Defects in Offspring », American Journal of Epidemiology 160, no 2 (15 juillet 2004): 102‑9, https://doi.org/10.1093/aje/kwh187.
[16] Alayne G. Ronnenberg et al., « Preconception Hemoglobin and Ferritin Concentrations Are Associated with Pregnancy Outcome in a Prospective Cohort of Chinese Women », The Journal of Nutrition 134, no 10 (octobre 2004): 2586‑91, https://doi.org/10.1093/jn/134.10.2586.
[17] P. C. Hindmarsh et al., « Effect of Early Maternal Iron Stores on Placental Weight and Structure », Lancet (London, England) 356, no 9231 (26 août 2000): 719‑23, https://doi.org/10.1016/s0140-6736(00)02630-1.
[18] Xi Tian et al., « Preconception Zinc Deficiency Disrupts Postimplantation Fetal and Placental Development in Mice », Biology of Reproduction 90, no 4 (avril 2014): 83, https://doi.org/10.1095/biolreprod.113.113910.
[19] I. Cetin, C. Berti, et S. Calabrese, « Role of micronutrients in the periconceptional period », Human Reproduction Update 16, no 1 (1 janvier 2010): 80‑95, https://doi.org/10.1093/humupd/dmp025.
[20] Sarah C. Bath et al., « Effect of Inadequate Iodine Status in UK Pregnant Women on Cognitive Outcomes in Their Children: Results from the Avon Longitudinal Study of Parents and Children (ALSPAC) », Lancet (London, England) 382, no 9889 (27 juillet 2013): 331‑37, https://doi.org/10.1016/S0140-6736(13)60436-5.
[21] Alayne G. Ronnenberg et al., « Preconception B-Vitamin and Homocysteine Status, Conception, and Early Pregnancy Loss », American Journal of Epidemiology 166, no 3 (1 août 2007): 304‑12, https://doi.org/10.1093/aje/kwm078.
[22] I. Cetin, C. Berti, et S. Calabrese, « Role of micronutrients in the periconceptional period », Human Reproduction Update 16, no 1 (1 janvier 2010): 80‑95, https://doi.org/10.1093/humupd/dmp025.
[23] Alayne G. Ronnenberg et al., « Preconception Homocysteine and B Vitamin Status and Birth Outcomes in Chinese Women », The American Journal of Clinical Nutrition 76, no 6 (décembre 2002): 1385‑91, https://doi.org/10.1093/ajcn/76.6.1385.
[24] Alayne G. Ronnenberg et al., « Preconception Homocysteine and B Vitamin Status and Birth Outcomes in Chinese Women », The American Journal of Clinical Nutrition 76, no 6 (décembre 2002): 1385‑91, https://doi.org/10.1093/ajcn/76.6.1385.
[25] Martin Hewison, « The Earlier the Better: Preconception Vitamin D and Protection against Pregnancy Loss », The Lancet Diabetes & Endocrinology 6, no 9 (1 septembre 2018): 680‑81, https://doi.org/10.1016/S2213-8587(18)30178-5.
[26] Braga DP, Halpern G, Setti AS, Figueira RC, Iaconelli A Jr, Borges E Jr. The impact of food intake and social habits on embryo quality and the likelihood of blastocyst formation. Reprod Biomed Online. 2015;31(1):30–38.
[27] Hammiche F, Vujkovic M, Wijburg W, de Vries JH, Macklon NS, Laven JS, Steegers-Theunissen RP. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil Steril. 2011;95(5):1820–1823.
[28] Deirdre K Tobias et al., « Prepregnancy adherence to dietary patterns and lower risk of gestational diabetes mellitus123 », The American Journal of Clinical Nutrition 96, no 2 (août 2012): 289‑95, https://doi.org/10.3945/ajcn.111.028266.
[29] Danielle A. J. M. Schoenaker et al., « Prepregnancy Dietary Patterns and Risk of Developing Hypertensive Disorders of Pregnancy: Results from the Australian Longitudinal Study on Women’s Health », The American Journal of Clinical Nutrition 102, no 1 (juillet 2015): 94‑101, https://doi.org/10.3945/ajcn.114.102475.
[30] Jessica A. Grieger, Luke E. Grzeskowiak, et Vicki L. Clifton, « Preconception Dietary Patterns in Human Pregnancies Are Associated with Preterm Delivery », The Journal of Nutrition 144, no 7 (juillet 2014): 1075‑80, https://doi.org/10.3945/jn.114.190686.
[31] Ella Schaefer et Deborah Nock, « The Impact of Preconceptional Multiple-Micronutrient Supplementation on Female Fertility », Clinical Medicine Insights. Women’s Health 12 (23 avril 2019): 1179562X19843868, https://doi.org/10.1177/1179562X19843868.
[32] I. Cetin, C. Berti, et S. Calabrese, « Role of micronutrients in the periconceptional period », Human Reproduction Update 16, no 1 (1 janvier 2010): 80‑95, https://doi.org/10.1093/humupd/dmp025.
[33] Alayne G. Ronnenberg et al., « Preconception B-Vitamin and Homocysteine Status, Conception, and Early Pregnancy Loss », American Journal of Epidemiology 166, no 3 (1 août 2007): 304‑12, https://doi.org/10.1093/aje/kwm078.
[34]J Stanhiser et al., « Omega-3 fatty acid supplementation and fecundability », Human Reproduction 37, no 5 (1 mai 2022): 1037‑46, https://doi.org/10.1093/humrep/deac027.